847 research outputs found

    Super-resolution microscopy: a brief history and new avenues.

    Get PDF
    Super-resolution microscopy (SRM) is a fast-developing field that encompasses fluorescence imaging techniques with the capability to resolve objects below the classical diffraction limit of optical resolution. Acknowledged with the Nobel prize in 2014, numerous SRM methods have meanwhile evolved and are being widely applied in biomedical research, all with specific strengths and shortcomings. While some techniques are capable of nanometre-scale molecular resolution, others are geared towards volumetric three-dimensional multi-colour or fast live-cell imaging. In this editorial review, we pick on the latest trends in the field. We start with a brief historical overview of both conceptual and commercial developments. Next, we highlight important parameters for imaging successfully with a particular super-resolution modality. Finally, we discuss the importance of reproducibility and quality control and the significance of open-source tools in microscopy. This article is part of the Theo Murphy meeting issue 'Super-resolution structured illumination microscopy (part 2)'

    Управління трудовим потенціалом при створенні інноваційної продукції

    Get PDF
    Super-resolution microscopy (SRM) bypasses the diffraction limit, a physical barrier that restricts the optical resolution to roughly 250 nm and was previously thought to be impenetrable. SRM techniques allow the visualization of subcellular organization with unprecedented detail, but also confront biologists with the challenge of selecting the best-suited approach for their particular research question. Here, we provide guidance on how to use SRM techniques advantageously for investigating cellular structures and dynamics to promote new discoveries

    SIMcheck:A toolbox for successful super-resolution structured illumination microscopy

    Get PDF
    Three-dimensional structured illumination microscopy (3D-SIM) is a versatile and accessible method for super-resolution fluorescence imaging, but generating high-quality data is challenging, particularly for non-specialist users. We present SIMcheck, a suite of ImageJ plugins enabling users to identify and avoid common problems with 3D-SIM data and assess resolution and data quality through objective control parameters. Additionally, SIMcheck provides advanced calibration tools and utilities for common image processing tasks. This open-source software is applicable to all commercial and custom platforms and will promote routine application of super-resolution SIM imaging in cell biology

    Are autistic traits measured equivalently in individuals with and without an Autism Spectrum Disorder?:An invariance analysis of the Autism Spectrum Quotient Short Form

    Get PDF
    It is common to administer measures of autistic traits to those without autism spectrum disorders (ASDs) with, for example, the aim of understanding autistic personality characteristics in non-autistic individuals. Little research has examined the extent to which measures of autistic traits actually measure the same traits in the same way across those with and without an ASD. We addressed this question using a multi-group confirmatory factor invariance analysis of the Autism Quotient Short Form (AQ-S: Hoekstra et al. in J Autism Dev Disord 41(5):589-596, 2011) across those with (n = 148) and without (n = 168) ASD. Metric variance (equality of factor loadings), but not scalar invariance (equality of thresholds), held suggesting that the AQ-S measures the same latent traits in both groups, but with a bias in the manner in which trait levels are estimated. We, therefore, argue that the AQ-S can be used to investigate possible causes and consequences of autistic traits in both groups separately, but caution is due when combining or comparing levels of autistic traits across the two group

    Climate and soil micro‐organisms drive soil phosphorus fractions in coastal dune systems

    Get PDF
    1. The importance of soil phosphorus (P) is likely to increase in coming decades due to the growing atmospheric nitrogen (N) deposition originated by industrial and agricultural activities. We currently lack a proper understanding of the main drivers of soil P pools in coastal dunes, which rank among the most valued priority conservation areas worldwide. 2. Here, we evaluated the joint effects of biotic (i.e. microbial abundance and richness, vegetation and cryptogams cover) and abiotic (i.e. pH and aridity) factors on labile, medium‐lability and recalcitrant soil P pools across a wide aridity gradient in the Atlantic coast of the Iberian Peninsula. 3. Climate determined the availability of medium‐lability, recalcitrant and total P, but had a minor net effect on labile P, which was positively and significantly related to the presence of plants, mosses and lichens. Medium‐lability P was significantly influenced by soil bacterial richness and abundance (positively and negatively, respectively). 4. Our results suggest that micro‐organisms transfer P from medium‐lability pool to more labile one. At the same time, increases in bacterial richness associated to biofilms might be involved in the thickening of the medium‐lability P pool in our climosequence. 5. These bacterial‐mediated transfers would confer resistance to the labile P pool under future climate change and uncover an important role of soil micro‐organisms as modulators of the geochemical P cycle.This project was financed by FEDER/Ministerio de Ciencia, Innovación y Universidades-Agencia Estatal de Investigación/Proyect (CGL2017-88124-R), European Research Council (ERC Grant Agreement 647038 [BIODESERT]) and the Fundaçã o para Ciência e Tecnologia (IF/00950/2014) and the FEDER, within the PT2020 Partnership Agreement and COMPETE 2020 (UID/BIA/04004/2013). F.T.M. acknowledges support from Generalitat Valenciana (CIDEGENT/2018/041). B.K.S. acknowledge research support on microbes and ecosystem functions from the Australian Research Council (DP170104634) and Research Award from the Humboldt Foundation

    The relationship between perceived training and development and employee retention:the mediating role of work attitudes

    Get PDF
    This paper considers how utilizing a model of job-related affect can be used to explain the processes through which perceived training and development influence employee retention. We applied Russell’s model of core affect to categorize four different forms of work attitude, and positioned these as mediators of the relationship between perceived training and development and intention to stay. Using data from 1,191 employees across seven organizations, multilevel analyses found that job satisfaction, employee engagement, and change-related anxiety were significantly associated with intention to stay, and fully mediated the relationship between perceived training and development and intention to stay. Contrary to our hypotheses, emotional exhaustion was not significantly associated with intention to stay nor acted as a mediator when the other attitudes were included. These findings show the usefulness of Russell’s model of core affect in explaining the link between training and development and employee retention. Moreover, the findings collectively suggest that studies examining employee retention should include a wider range of work attitudes that highlight pleasant forms of affect

    Strategic and practical guidelines for successful structured illumination microscopy

    Get PDF
    Linear 2D- or 3D-structured illumination microscopy (SIM or3D-SIM, respectively) enables multicolor volumetric imaging of fixed and live specimens with subdiffraction resolution in all spatial dimensions. However, the reliance of SIM on algorithmic post-processing renders it particularly sensitive to artifacts that may reduce resolution, compromise data and its interpretations, and drain resources in terms of money and time spent. Here we present a protocol that allows users to generate high-quality SIM data while accounting and correcting for common artifacts. The protocol details preparation of calibration bead slides designed for SIM-based experiments, the acquisition of calibration data, the documentation of typically encountered SIM artifacts and corrective measures that should be taken to reduce them. It also includes a conceptual overview and checklist for experimental design and calibration decisions, and is applicable to any commercially available or custom platform. This protocol, plus accompanying guidelines, allows researchers from students to imaging professionals to create an optimal SIM imaging environment regardless of specimen type or structure of interest. The calibration sample preparation and system calibration protocol can be executed within 1-2 d

    Whole-body integration of gene expression and single-cell morphology

    Get PDF
    Animal bodies are composed of cell types with unique expression programs that implement their distinct locations, shapes, structures, and functions. Based on these properties, cell types assemble into specific tissues and organs. To systematically explore the link between cell-type-specific gene expression and morphology, we registered an expression atlas to a whole-body electron microscopy volume of the nereid Platynereis dumerilii. Automated segmentation of cells and nuclei identifies major cell classes and establishes a link between gene activation, chromatin topography, and nuclear size. Clustering of segmented cells according to gene expression reveals spatially coherent tissues. In the brain, genetically defined groups of neurons match ganglionic nuclei with coherent projections. Besides interneurons, we uncover sensory-neurosecretory cells in the nereid mushroom bodies, which thus qualify as sensory organs. They furthermore resemble the vertebrate telencephalon by molecular anatomy. We provide an integrated browser as a Fiji plugin for remote exploration of all available multimodal datasets
    corecore